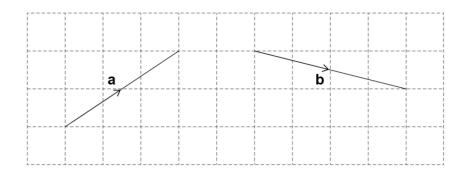
1
$$\mathbf{a} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$

Work out $3\mathbf{a} + \mathbf{b}$

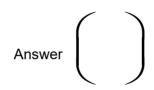
vvon out				[2 marks

Answer


2	Work out	3 (1) +	$-\begin{pmatrix} 2 \\ 5 \end{pmatrix}$
		(0)	(0)

[1 mark]

Answer


The diagram shows the vectors **a** and **b**.

As a column vector $\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

3 (a) What is b as a column vector?

[2 marks]

3 (b) Work out 4**a** as a column vector.

[1 mark]

3 (c)
$$a + c = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Work out **c** as a column vector.

Circle your answer.

[1 mark]

 $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

- $\binom{0}{2}$
- $\begin{pmatrix} -2\\0 \end{pmatrix}$
- $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$

4 Work out
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

[1 mark